
BOURNS®

- Rugged Triple-Diffused Planar Construction
- 100 W at 25°C Case Temperature
- 5 A Continuous Collector Current

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
Collector-base voltage ($I_E = 0$)	V _{CBO}	850	V	
Collector-emitter voltage (V _{BE} = 0)	V _{CES}	850	V	
Collector-emitter voltage (I _B = 0)	V _{CEO}	400	V	
Emitter-base voltage	V _{EBO}	10	V	
Continuous collector current	۱ _С	5	A	
Peak collector current (see Note 1)	I _{CM}	10	A	
Continuous device dissipation at (or below) 25°C case temperature	P _{tot}	100	W	
Operating junction temperature range	Тj	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	

NOTE 1: This value applies for $t_p \le 10$ ms, duty cycle $\le 2\%$.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted)

l	TEST CONDITIONS				MIN	ТҮР	MAX	UNIT	
V _{CEO(sus)}	Collector-emitter sustaining voltage	I _C =	0.1 A	L = 25 mH	(see Note 2)	400			V
I _{CES}	Collector-emitter cut-off current	V _{CE} = V _{CE} =		V _{BE} = 0 V _{BE} = 0	T _C = 125°C			50 500	μA
I _{EBO}	Emitter cut-off current	V _{EB} =	10 V	I _C = 0				1	mA
h _{FE}	Forward current transfer ratio	V _{CE} =	5 V	I _C = 0.5 A	(see Notes 3 and 4)	20		60	
V _{CE(sat)}	Collector-emitter saturation voltage	I _B =	0.6 A	I _C = 3 A	(see Notes 3 and 4)			1.5	V
V _{BE(sat)}	Base-emitter saturation voltage	I _B =	0.6 A	I _C = 3 A	(see Notes 3 and 4)			1.3	V
f _t	Current gain bandwidth product	V _{CE} =	10 V	I _C = 0.5 A	f = 1 MHz		12		MHz
C _{ob}	Output capacitance	V _{CB} =	20 V	I _E = 0	f = 0.1 MHz		110		pF

NOTES: 2. Inductive loop switching measurement.

3. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu$ s, duty cycle $\le 2\%$.

4. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

PARAMETER			MAX	UNIT
R _{0JC} Junction to case thermal resistance			1.25	°C/W

inductive-load-switching characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]				ТҮР	МАХ	UNIT
t _{sv}	Voltage storage time	I _C = 3 A	$I_{B(on)} = 0.6A$	$V_{BE(off)} = -5 V$			1.4	μs
t _{fi}	Current fall time	V _{CC} = 50 V	(see Figures 1 and 2)				150	ns
t _{sv}	Voltage storage time	I _C = 3 A	$I_{B(on)} = 0.6A$	$V_{BE(off)} = -5 V$			1.5	μs
t _{fi}	Current fall time	V _{CC} = 50 V	$T_{C} = 100^{\circ}C$				300	ns

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

BOURNS®

PARAMETER MEASUREMENT INFORMATION

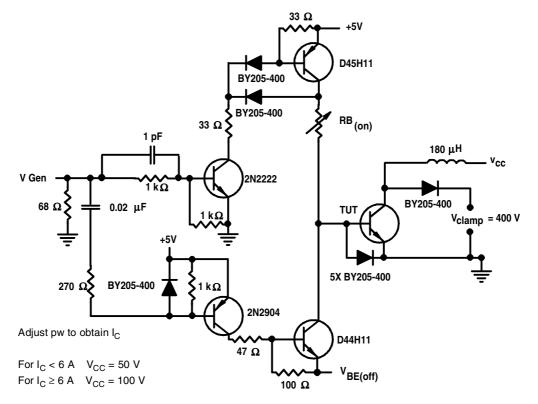
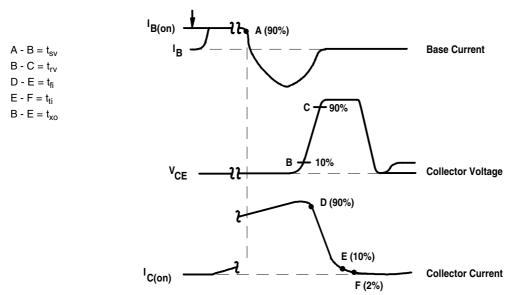



Figure 1. Inductive-Load Switching Test Circuit

NOTES: A. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r < 15$ ns, $R_{in} > 10 \Omega$, $C_{in} < 11.5$ pF. B. Resistors must be noninductive types.

Figure 2. Inductive-Load Switching Waveforms

PRODUCT INFORMATION

MAY 1989 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

MAXIMUM SAFE OPERATING REGIONS

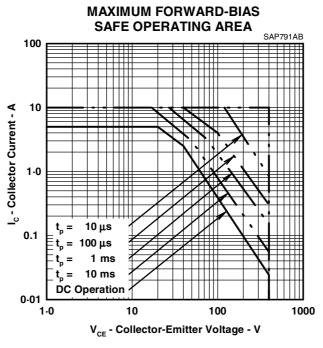


Figure 3.

