

Features

- Formerly **KEKO**VARICON products
- Standard operating voltage range V_{rms} 275 V to 440 V
- Custom operating voltage range V_{rms} 150 V to 440 V
- Low limiting voltages @ In
- Broad range of current (pulse shape 8/20 µs) and energy (current pulse shape 10/350 µs) handling capabilities
- +85 °C continuous operating temperature; higher operating temperatures are available upon request
- Available in various versions and custom designed terminals

ZOVS/ZOVA/ZOVH Series Square Shaped Stacked High Energy Varistors

General Information

A stacked high energy varistor is formed to improve the capability of standard ZOV high energy varistors. Such varistors provide a much higher maximum pulse current and absorption energy capability in the same space when compared to standard single ZOV varistors.

Stacked varistors are designed to provide secondary surge protection in an outdoor and service entrance environment. They provide high current (pulse shape 8/20 μ s) as well as high energy (current pulse shape 10/350 μ s) handling capabilities according to IEC 61643-11, Class I and II tests.

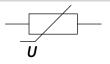
Additional Information

Click these links for more information:

PRODUCT

TECHNICAL INVENTOR

Y SAMPLE


CONTACT

Agency Recognition

Standard	UL 1449 4th Edition			
File Number	E313168**			

^{**}Not all rated voltages and sizes are UL recognized. Check the file for details.

Varistor Symbol

Absolute Maximum Ratings

Devenuetos	Standard Typ	es	Custom Designed Type	
Parameter	Value	Units	Value	Units
Continuous:				
Steady State Applied Voltage				
DC Voltage Range (V _{dc})	350 to 585	V	200 to 585	V
AC Voltage Range (V _{rms})	275 to 440	V	150 to 440	V
Transient:				
Peak Single Pulse Surge Current, 8/20 µs Waveform (I _{max})	40000 to 80000	Α	> 5500	A/cm ²
Single Pulse Surge Energy, 10/1000 μs Waveform (W _{max})	1280 to 4290	J	> 400	J/cm ³
l _{imp} (10/350) peak current value	4000 to 12500	Α	4000 to 12500	Α
Operating Ambient Temperature	-40 to +85	°C	-40 to +85	°C
Storage Temperature Range	-40 to +125	°C	-40 to +125	°C
Threshold Voltage Temperature Coefficient	<+0.05	%/°C	<+0.05	%/°C
Insulation Resistance ¹	>1	GΩ	>1	GΩ
Isolation Voltage Capability ¹	> 2.5	kV	> 2.5	kV
Response Time	< 25	ns	< 25	ns
Climatic Category ¹	40 / 85 / 56		40 / 85 / 56	

Note 1: Epoxy coated components

WARNING Cancer and Reproductive Harm www.P65Warnings.ca.gov

* RoHS Directive 2015/863, Mar 31, 2015 and Annex. Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

The products described berein and this document are subject to specific legal disclaimers as set forth on the las-

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

Index

eatures	1
General Information	
Agency Recognition	<u>1</u>
Varistor Symbol	<u>1</u>
Absolute Maximum Ratings	<u>1</u>
Device Ratings	<u>2</u>
Product Dimensions	<u>3</u>
How to Order	<u>3</u>
Typical Part Marking	<u>4</u>
Packaging Specifications	<u>4</u>
Reliability Testing Procedures	<u>5-6</u>
Terminology	<u>7</u>
_egal Disclaimer	8

Device Ratings

ZOVS Series

Model	V _{rms}	V _{dc}	V _n @ 1 mA	V _c @ I _c	Ic	W _{max} 10/1000 μs	P max.	Ι _{max} 8/20 <i>μ</i> s	Ι _n 8/20 <i>μ</i> s	l _{lmp} 10/350 <i>μ</i> s	C Typ. @ 1 kHz
	V	V	V	V	Α	J	W	А	А	А	pF
ZOVS 275 K 40	275	350	430	710	300	1280	1.4	40000	20000	4000	3400
ZOVS 320 K 40	320	420	510	840	300	1620	1.4	40000	20000	4000	3050
ZOVS 385 K 40	385	505	620	1025	300	1660	1.4	40000	20000	4000	2500
ZOVS 420 K 40	420	560	680	1120	300	1780	1.4	40000	20000	4000	2280
ZOVS 440 K 40	440	585	715	1180	300	1860	1.4	40000	20000	4000	2100

ZOVA Series

Model	V _{rms}	V _{dc}	V _n @ 1 mA	V _c @ I _c	I _C	W _{max} 10/1000 <i>μ</i> s	P max.	Ι _{max} 8/20 <i>μ</i> s	Ι _n 8/20 <i>μ</i> s	l _{lmp} 10/350 <i>μ</i> s	C Typ. @ 1 kHz
	V	V	V	V	Α	J	W	А	Α	А	pF
ZOVA 275 K 40	275	350	430	710	300	1920	1.4	40000	20000	5000	3150
ZOVA 320 K 40	320	420	510	840	300	2430	1.4	40000	20000	5000	2800
ZOVA 385 K 40	385	505	620	1025	300	2490	1.4	40000	20000	5000	2250
ZOVA 420 K 40	420	560	680	1120	300	2670	1.4	40000	20000	5000	2050
ZOVA 440 K 40	440	585	715	1180	300	2790	1.4	40000	20000	5000	1950

ZOVH Series

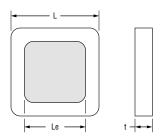
Model	V _{rms}	V _{dc}	V _n @ 1 mA	V _c @ I _c	Ic	W _{max} 10/1000 <i>μ</i> s	P max.	Ι _{max} 8/20 <i>μ</i> s	Ι _n 8/20 <i>μ</i> s	l _{lmp} 10/350 <i>μ</i> s	C Typ. @ 1 kHz
	V	V	V	V	Α	J	W	Α	Α	А	pF
ZOVH 275 K 40	275	350	430	710	300	2580	1.4	40000	15000	6500	2900
ZOVH 320 K 40	320	420	510	840	300	3060	1.4	40000	15000	6500	2400
ZOVH 385 K 40	385	505	620	1025	300	3720	1.4	40000	15000	6500	2000
ZOVH 420 K 40	420	560	680	1120	300	4080	1.4	40000	15000	6500	1900
ZOVH 440 K 40	440	585	715	1180	300	4290	1.4	40000	15000	6500	1800

Disc Configurations

ZOVS Series

Size – number of discs	l _{imp} (10/350 μs) capability
Single disc – 40	4 kA
Double disc – 40 D2	8 kA

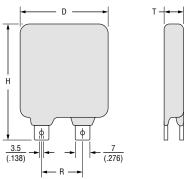
ZOVA Series

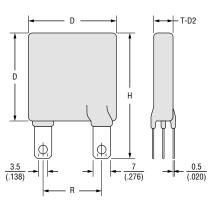

Size – number of discs	l _{imp} (10/350 μs) capability
Single disc – 40	5 kA
Double disc – 40 D2	10 kA

ZOVH Series

Size – number of discs	l _{imp} (10/350 <i>μ</i> s) capability			
Single disc – 40	6.5 kA			
Double disc – 40 D2	12.5 kA			

Product Dimensions

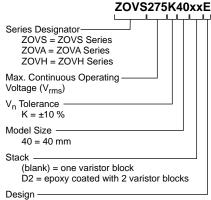

Metallized Varistor Block



Size	Dimension					
Size	L (max)	Le (max)				
40	34 (1.339)	31 (1.220)				

Dimension Model T-D2 (max) (max) (max) 4.0 8.0 11.2 ZOVS 275 K 40 (.157)(.315)(.441)4.4 8.4 12.5 **ZOVS 320 K 40** (.173)(.331)(.492)ZOVS 385 K 40 (.567)(.220)(.378)6.2 10.2 15.3 ZOVS 420 K 40 (.402)(.244)(.602)6.9 10.9 15.9 **ZOVS 440 K 40** (.272)(.429)(.626)

Epoxy Coated Varistor


Size	Dimension					
Size	D (max)	R¹	H (max)			
40	36.5 (1.437)	25.4 (1.00)	<u>56</u> (2.205)			

		imensio	n
Model	t	T	T-D2
	(max)	(max)	(max)
ZOVA 275 K 40	4.3	8.2	11.8
	(.169)	(.323)	(.465)
ZOVA 320 K 40	4.7	8.7	13.3
	(.185)	(.343)	(.524)
ZOVA 385 K 40	<u>5.9</u>	9.9	15.3
	(.232)	(.390)	(.602)
ZOVA 420 K 40	6.5	10.5	16.4
	(.256)	(.413)	(.646)
ZOVA 440 K 40	7.2	10.9	17.0
	(.283)	(.441)	(.669)

	Dimension		
Model	t	T	T-D2
	(max)	(max)	(max)
ZOVH 275 K 40	4.6	8.6	12.6
	(.181)	(.339)	(.496)
ZOVH 320 K 40	<u>5.0</u>	9.0	14.2
	(.197)	(.354)	(.559)
ZOVH 385 K 40	6.2	10.2	16.4
	(.244)	(.402)	(.646)
ZOVH 420 K 40	6.8	10.8	17.6
	(.268)	(.425)	(.693)
ZOVH 440 K 40	7.5	<u>11.5</u>	18.5
	(.295)	(.453)	(.728)

DIMENSIONS: $\frac{MM}{(INCHES)}$

How to Order

E = Epoxy Coated Varistor

w/Rigid Terminals

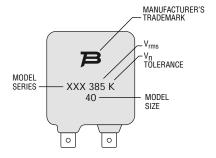
M = Metallized Varistor Block

ME = Uncoated Block w/Rigid Terminals (available upon request)

MP = Metallized Varistor Block

w/Passivation (available upon request)

Instructions for Creating Orderable Part Number:


- 1) Start with base part number in characteristics table: (example ZOVS275K40).
- Add information on number of varistor blocks For a single block: No additional letters (example part number remains ZOVS275K40) For two discs (epoxy-coated only): Add D2 (example part number becomes ZOVS275K40D2).
- 3) Add Design:

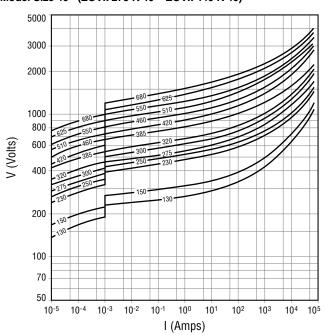
Add M for metallized varistor block and E for epoxy coated varistor block
For a metallized varistor block: (example part number becomes ZOVS275K40M).
For an epoxy-coated varistor with a single varistor block: (example part number becomes ZOVS275K40E).
For an epoxy-coated varistor with two varistor blocks: (example part number becomes ZOVS275K40D2E).

 Part number can have no spaces or lower case letters.

Typical Part Marking

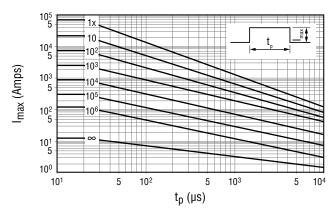
Epoxy Coated Varistor

Metallized Varistor Block


no marking

Packaging Quantities - Bulk

Model	Quantity	Model	Quantity
ZOVS 275 K 40	64	ZOVS 275 K 40 D2	30
ZOVS 320 K 40	64	ZOVS 320 K 40 D2	30
ZOVS 385 K 40	64	ZOVS 385 K 40 D2	30
ZOVS 420 K 40	64	ZOVS 420 K 40 D2	30
ZOVS 440 K 40	64	ZOVS 440 K 40 D2	30
ZOVA 275 K 40	64	ZOVA 275 K 40 D2	30
ZOVA 320 K 40	64	ZOVA 320 K 40 D2	30
ZOVA 385 K 40	64	ZOVA 385 K 40 D2	30
ZOVA 420 K 40	64	ZOVA 420 K 40 D2	30
ZOVA 440 K 40	64	ZOVA 440 K 40 D2	30
ZOVH 275 K 40	64	ZOVH 275 K 40 D2	30
ZOVH 320 K 40	64	ZOVH 320 K 40 D2	30
ZOVH 385 K 40	64	ZOVH 385 K 40 D2	30
ZOVH 420 K 40	64	ZOVH 420 K 40 D2	30
ZOVH 440 K 40	64	ZOVH 440 K 40 D2	30


Protection Level

Model Size 40 - (ZOVx 275 K 40 ~ ZOVx 440 K 40)

Pulse Rating Curves

Model Size 40 - (ZOVx 275 K 40 ~ ZOVx 440 K 40)

Reliability Testing Procedures (Where Applicable)

Varistor test procedures comply with CECC 42200 and IEC 1051-1/2. Test results are available upon customer request. Special tests can be performed upon customer request.

Reliability Parameter	Test	Tested According to	Condition to be Satisfied after Testing
AC/DC Bias Reliability	AC/DC Life Test	CECC 42200, Test 4.20 or IEC 1051-1, Test 4.20	IδV _n (1 mA) < 10 %
Pulse Current Capability	I _{max} 8/20 μs	CECC 42200, Test C 2.1 or IEC 1051-1, Test 4.5 10 pulses in the same direction at 2 pulses per minute at maximum peak current for 10 pulses	IδV _n (1 mA)I < 10 % no visible damage
Pulse Energy Capability	W _{max} 10/1000 μs	CECC 42200, Test C 2.1 or IEC 1051-1, Test 4.5 10 pulses in the same direction at 1 pulse every 2 minutes at maximum peak current for 10 pulses	IδV _n (1 mA)I < 10 % no visible damage
Environmental and Storage Reliability	Climatic Sequence	CECC 42200, Test 4.16 or IEC 1051-1, Test 4.17 a) Dry heat, 16h, UCT, Test Ba, IEC 68-2-2 b) Damp heat, cyclic, the first cycle: 55 °C, 93 % RH, 24 h, Test Db 68-2-4 c) Cold, LCT, 2 h, Test Aa, IEC 68-2-1 d) Damp heat cyclic, remaining 5 cycles: 55 °C, 93 % RH, 24 h/cycle, Test Bd, IEC 68-2-30	ΙδV _n (1 mA)l < 10 %
	Thermal Shock	CECC 42200, Test 4.12, Test Na, IEC 68-2-14	IδV _n (1 mA)I < 10 % no visible damage
	Steady State Damp Heat	CECC 42200, Test 4.17, Test Ca, IEC 68-2-3	δV _n (1 mA) < 10 %
	Storage Test	IEC 68-2-2, Test Ba, 1000 h at maximum storage temperature	IδV _n (1 mA) < 5 %

Continued on Next Page

Reliability Testing Procedures (Where Applicable - Continued)

Reliability Parameter	Test	Tested According to	Condition to be Satisfied after Testing
	Solderability	CECC 42200, Test 4.10.1, Test Ta, IEC 68-2-20 solder bath and reflow method	Solderable at shipment and after 2 years of storage, criteria: >95% must be covered by solder for reflow meniscus
	Resistance to Soldering Heat	CECC 42200, Test 4.10.2, Test Tb, IEC 68-2-20 solder bath and reflow method	IδV _n (1 mA)I < 5 %
	Terminal Strength	JIS-C-6429, App. 1, 18 N for 60 sec.	No visual damage
Mechanical Reliability	Board Flex	JIS-C-6429, App. 2, 2 mm min.	IδV _n (1 mA)l < 2 % No visible damage
	Vibration	CECC 42200, Test 4.15, Test Fc, IEC 68-2-6 Frequency range 10 to 55 Hz (AEC: 10-2000 Hz) Amplitude 0.75 m/s ² or 98 m/s ² (AEC: 5 g for 20 minutes) To- tal duration 6 h (3x2 h) (AEC: 12 cycles each of 3 directions) Waveshape - half sine	IδV _n (1 mA)l < 2 % No visible damage
	Mechanical Shock	CECC 42200, Test 4.14, Test Ea, IEC 68-2-27 Acceleration = 490 m/s ² (AEC: MIL-STD-202-Method 213), Pulse duration = 11 ms, Waveshape - half sine; Number of shocks = 3x6	IδV _n (1 mA)I < 10 % No visible damage
Electrical Transient Conduction	ISO-7637-1 Pulses	Other pulses - freestyle.	IδV _n (1 mA)I < 10 % No visible damage

BOURNS®

Asia-Pacific: Tel: +886-2 2562-4117 • Email: asiacus@bourns.com

EMEA: Tel: +36 88 885 877 • Email: eurocus@bourns.com

The Americas: Tel: +1-951 781-5500 • Email: americus@bourns.com

www.bourns.com

Terminology		
Term	Symbol	Definition
Rated AC Voltage	V _{rms}	Maximum continuous sinusoidal AC voltage (<5 % total harmonic distortion) which may be applied to the component under continuous operation conditions at +25 °C
Rated DC Voltage	V _{dc}	Maximum continuous DC voltage (<5 % ripple) which may be applied to the component under continuous operating conditions at +25 °C
Supply Voltage	V	The voltage by which the system is designated and to which certain operating characteristics of the system are referred; $V_{rms} = 1.1 \text{ x V}$
Leakage Current	l _{dc}	The current passing through the varistor at $\rm V_{\rm dc}$ and at +25 $^{\circ}\rm C$ or at any other specified temperature
Varistor Voltage	V _n	Voltage across the varistor measured at a given reference current (In)
Reference Current	I _n	Reference current = 1 mA DC
Protection Level	-	The peak voltage developed across the varistor under standard atmospheric conditions, when passing an 8/20 μ s class current pulse
Class Current	l _c	A peak value of current which is 1/10 of the maximum peak current for 100 pulses at two per minute for the 8/20 μ s pulse
Voltage Clamping Ratio	V _c /V _{app}	A figure of merit measure of the varistor clamping effectiveness as defined by the symbols V_c/V_{app} , where $(V_{app} = V_{rms} \text{ or } V_{dc})$
Jump Start Transient	V _{jump}	The jump start transient results from the temporary application of an overvoltage in excess of the rated battery voltage. The circuit power supply may be subjected to a temporary overvoltage condition due to the voltage regulation failing or it may be deliberately generated when it becomes necessary to boost start the car.
Rated Single Pulse Transient Energy	W _{max}	Energy which may be dissipated for a single 10/1000 μ s pulse of a maximum rated current, with rated AC voltage or rated DC voltage also applied, without causing device failure
Load Dump Transient	WLD	Load Dump is a transient which occurs in automotive environments. It is an exponentially decaying positive voltage which occurs in the event of a battery disconnect while the alternator is still generating charging current with other loads remaining on the alternator circuit at the time of battery disconnect.
Rated Peak Single Pulse Transient Current	I _{max}	Maximum peak current which may be applied for a single 8/20 μ s pulse, with rated line voltage also applied, without causing device failure
Rated Transient Average Power Dissipation	P	Maximum average power which may be dissipated due to a group of pulses occurring within a specified isolated time period, without causing device failure at 25 °C
Capacitance	C	Capacitance between two terminals of the varistor measured @ 1 kHz
Non-linearity Exponent	α	A measure of varistor nonlinearity between two given operating currents, I_n and I_1 as described by $I=k$ V exp(a), where: - k is a device constant, - $I_1 < I < I_n$ and - a log $(I_1/I_n)/\log(V_1/V_n) = 1/\log(V_1/V_n)$, where: - I_r is reference current (1 mA) and V_n is varistor voltage - $I_1 = 10$ I_n , V_1 is the voltage measured at I_1
		The time lag between application of a surge and varistor's "turn-on" conduction action
Varistor Voltage Temperature Coefficient	TC	(V _n @ 85 °C - V _n @ 25 °C) / (V _n @ 25 °C) x 60 °C) x 100
Insulation Resistance	IR	Minimum resistance between shorted terminals and varistor surface
Isolation Voltage		The maximum peak voltage which may be applied under continuous operating conditions between the varistor terminations and any conducting mounting surface
Operating Temperature		The range of ambient temperature for which the varistor is designed to operate continuously as defined by the temperature limits of its climatic category
Climatic Category	LCT/UCT/DHD	LCT & UCT = Lower and Upper Category Temperature - the minimum and maximum ambient temperatures for which a varistor has been designed to operate continuously. DHD = Dump Heat Test Duration
Storage Temperature		Storage temperature range without voltage applied
Current/Energy Derating		Derating of maximum values when operated above UCT

Legal Disclaimer Notice

This legal disclaimer applies to purchasers and users of Bourns® products manufactured by or on behalf of Bourns, Inc. and its affiliates (collectively, "Bourns").

Unless otherwise expressly indicated in writing, Bourns® products and data sheets relating thereto are subject to change without notice. Users should check for and obtain the latest relevant information and verify that such information is current and complete before placing orders for Bourns® products.

The characteristics and parameters of a Bourns® product set forth in its data sheet are based on laboratory conditions, and statements regarding the suitability of products for certain types of applications are based on Bourns' knowledge of typical requirements in generic applications. The characteristics and parameters of a Bourns® product in a user application may vary from the data sheet characteristics and parameters due to (i) the combination of the Bourns® product with other components in the user's application, or (ii) the environment of the user application itself. The characteristics and parameters of a Bourns® product also can and do vary in different applications and actual performance may vary over time. Users should always verify the actual performance of the Bourns® product in their specific devices and applications, and make their own independent judgments regarding the amount of additional test margin to design into their device or application to compensate for differences between laboratory and real world conditions.

Unless Bourns has explicitly designated an individual Bourns® product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949) or a particular qualification (e.g., UL listed or recognized), Bourns is not responsible for any failure of an individual Bourns® product to meet the requirements of such industry standard or particular qualification. Users of Bourns® products are responsible for ensuring compliance with safety-related requirements and standards applicable to their devices or applications.

Bourns® products are not recommended, authorized or intended for use in nuclear, lifesaving, life-critical or life-sustaining applications, nor in any other applications where failure or malfunction may result in personal injury, death, or severe property or environmental damage. Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any Bourns® products in such unauthorized applications might not be safe and thus is at the user's sole risk. Life-critical applications include devices identified by the U.S. Food and Drug Administration as Class III devices and generally equivalent classifications outside of the United States.

Bourns expressly identifies those Bourns® standard products that are suitable for use in automotive applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns® standard products in an automotive application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk. If Bourns expressly identifies a sub-category of automotive application in the data sheet for its standard products (such as infotainment or lighting), such identification means that Bourns has reviewed its standard product and has determined that if such Bourns® standard product is considered for potential use in automotive applications, it should only be used in such sub-category of automotive applications. Any reference to Bourns® standard product in the data sheet as compliant with the AEC-Q standard or "automotive grade" does not by itself mean that Bourns has approved such product for use in an automotive application.

Bourns® standard products are not tested to comply with United States Federal Aviation Administration standards generally or any other generally equivalent governmental organization standard applicable to products designed or manufactured for use in aircraft or space applications. Bourns expressly identifies Bourns® standard products that are suitable for use in aircraft or space applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns® standard product in an aircraft or space application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk.

The use and level of testing applicable to Bourns® custom products shall be negotiated on a case-by-case basis by Bourns and the user for which such Bourns® custom products are specially designed. Absent a written agreement between Bourns and the user regarding the use and level of such testing, the above provisions applicable to Bourns® standard products shall also apply to such Bourns® custom products.

Users shall not sell, transfer, export or re-export any Bourns® products or technology for use in activities which involve the design, development, production, use or stockpiling of nuclear, chemical or biological weapons or missiles, nor shall they use Bourns® products or technology in any facility which engages in activities relating to such devices. The foregoing restrictions apply to all uses and applications that violate national or international prohibitions, including embargos or international regulations. Further, Bourns® products and Bourns technology and technical data may not under any circumstance be exported or re-exported to countries subject to international sanctions or embargoes. Bourns® products may not, without prior authorization from Bourns and/or the U.S. Government, be resold, transferred, or re-exported to any party not eligible to receive U.S. commodities, software, and technical data.

To the maximum extent permitted by applicable law, Bourns disclaims (i) any and all liability for special, punitive, consequential, incidental or indirect damages or lost revenues or lost profits, and (ii) any and all implied warranties, including implied warranties of fitness for particular purpose, non-infringement and merchantability.

For your convenience, copies of this Legal Disclaimer Notice with German, Spanish, Japanese, Traditional Chinese and Simplified Chinese bilingual versions are available at:

Web Page: http://www.bourns.com/legal/disclaimers-terms-and-policies

PDF: http://www.bourns.com/docs/Legal/disclaimer.pdf