Features

- Optimizes data transmission in ECL systems through proper termination between drivers and receivers
- Minimizes overshoot, undershoot, and ringing while increasing noise immunity
- Provides decoupling capacitors
- RoHS compliant

For information on ECL Terminators, download Bourns' ECL Terminator Application Note.

General Description

Digital systems incorporating Emitter Coupled Logic (ECL) or other ultra-high switching speed logic families will require signal termination to prevent transmission line effects such as reflections and ringing due to fast transition times.

Bourns 800 series resistor capacitor networks are ideal for termination of high speed transmission lines. Each network is composed of resistors for parallel termination and bypass capacitor(s) for cross talk noise reduction.

The 5 conformal coated SIP circuit variations offered are as follows.

Electrical Characteristics

- Resistance Tolerance: ±5%
- Resistance Power: 0.1 watt
- Capacitance Tolerance: ±20%
- Capacitance Voltage Rating: 50 Volts
- Capacitance Dielectric Type: X7R

Physical Characteristics

- Flammability: Conforms to UL94V-0
- Leadframe: Copper (Olin 194)
- Body Material: Epoxy/Anhydride (Conformal Material)
- Custom Resistance Range: 10 ohms to 50K ohms
- Custom Capacitance Range: 39 pF to 100,000 pF
- NPO and Z5U dielectrics available on a custom basis.

For Standard Values Used in Capacitors, Inductors, and Resistors, click here.

800 Series - RC Networks ECL Terminator Circuits

Typical Part Marking

801 AND 802
Represents total content. Layout may vary.

803 AND 805
Represents total content. Layout may vary.

804
Represents total content. Layout may vary.

Product Dimensions

Typical Part Marking

For information on ECL Terminators, download Bourns' ECL Terminator Application Note.

The 800 Series is obsolete, and not recommended for new designs.

800 Series - RC Networks ECL Terminator Circuits

801 8, 10 and 12 Pin SIP
(4608M-801-RC/CCL)
Designed to terminate 6 to 10 transmission lines using parallel termination techniques. Standard resistance values include 50, 68, 75, 82, 90 or 100 ohms and are chosen to match the characteristic impedance \((Z_0)\) of the transmission line. A 0.01 \(\mu\)F capacitor is provided to help maintain a solid power supply level within the network package, mitigating any cross talk or feedthrough effects. Values for R and C not shown in the following table are available on a custom basis.

Standard 801 Part Numbers

<table>
<thead>
<tr>
<th>R</th>
<th>±2 %</th>
<th>C</th>
<th>±20 %</th>
<th>Bourns Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4608M-801-500/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4608M-801-680/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4608M-801-750/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4608M-801-820/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4608M-801-900/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4608M-801-101/103L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

801 Electrical Schematic and Application

802 10 Pin SIP
(4610M-802-RC/CCL)
Designed to terminate 6 transmission lines using parallel termination techniques. Popular resistance values include 50, 68, 75, 82, 90 or 100 ohms and are chosen to match the characteristic impedance \((Z_0)\) of the transmission line. Two 0.01 \(\mu\)F capacitors are provided to reduce cross talk between lines and to decrease network package inductance. Values for R and C not shown in the following table are available on a custom basis.

Standard 802 Part Numbers

<table>
<thead>
<tr>
<th>R</th>
<th>±2 %</th>
<th>C</th>
<th>±20 %</th>
<th>Bourns Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4610M-802-500/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4610M-802-680/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4610M-802-750/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4610M-802-820/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4610M-802-900/103L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 (\Omega)</td>
<td>0.01 (\mu)F</td>
<td>4610M-802-101/103L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

802 Electrical Schematic and Application

803 8, 10 and 12 Pin SIP 10K ECL
(4610H-803-ZoC/CCL)
Designed to terminate 6 to 10 transmission lines using Thevenin equivalent parallel termination techniques in systems using 10K ECL. Popular impedance values include 50, 70, 75, 80, 90, 100, 120, 150 or 200 ohms. Standard values for \(R_1\) and \(R_2\), based on \(Z_0\), have been chosen to accommodate 10K ECL designs. A 0.1 \(\mu\)F capacitor is provided to reduce cross talk noise within the network package. Values for \(Z_0\) and C not shown in the following table are available on a custom basis. This type of termination is an alternative to parallel termination used when a separate \(V_{tt}\) power supply is not available.

Standard 803 Part Numbers

<table>
<thead>
<tr>
<th>(Z_0)</th>
<th>±2 %</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>±20 %</th>
<th>C</th>
<th>±20 %</th>
<th>Bourns Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 (\Omega)</td>
<td>81 (\Omega)</td>
<td>130 (\Omega)</td>
<td>0.1 (\mu)F</td>
<td>4610H-803-500-104L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 (\Omega)</td>
<td>113 (\Omega)</td>
<td>182 (\Omega)</td>
<td>0.1 (\mu)F</td>
<td>4610H-803-700-104L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 (\Omega)</td>
<td>121 (\Omega)</td>
<td>195 (\Omega)</td>
<td>0.1 (\mu)F</td>
<td>4610H-803-750-104L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 (\Omega)</td>
<td>130 (\Omega)</td>
<td>208 (\Omega)</td>
<td>0.1 (\mu)F</td>
<td>4610H-803-800-104L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 (\Omega)</td>
<td>146 (\Omega)</td>
<td>234 (\Omega)</td>
<td>0.1 (\mu)F</td>
<td>4610H-803-900-104L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 (\Omega)</td>
<td>162 (\Omega)</td>
<td>260 (\Omega)</td>
<td>0.1 (\mu)F</td>
<td>4610H-803-101-104L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 (\Omega)</td>
<td>194 (\Omega)</td>
<td>312 (\Omega)</td>
<td>0.1 (\mu)F</td>
<td>4610H-803-121-104L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 (\Omega)</td>
<td>243 (\Omega)</td>
<td>390 (\Omega)</td>
<td>0.1 (\mu)F</td>
<td>4610H-803-151-104L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 (\Omega)</td>
<td>325 (\Omega)</td>
<td>520 (\Omega)</td>
<td>0.1 (\mu)F</td>
<td>4610H-803-201-104L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

803 Electrical Schematic and Application

Features

- Minimizes space and routing problems, and reduces manufacturing cost per installed resistive function
- Increases board yields and reliability by reducing component count
804 Series - RC Networks ECL Terminator Circuits

804 12 Pin SIP ECL
(4612M-804-RCL)
Designed to terminate 6 transmission lines using parallel termination techniques. Popular resistance values include 50 or 100 ohms. A 0.1 μF capacitor is provided for connection to Vee. Two 0.01 μF capacitors are provided for connection to Vtt. Values for R and C not shown in the following table are available on a custom basis.

Standard 804 Part Numbers

<table>
<thead>
<tr>
<th>R</th>
<th>Ct</th>
<th>Ce</th>
<th>Bourns Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>±2 %</td>
<td>±20 %</td>
<td>±20 %</td>
<td></td>
</tr>
<tr>
<td>50 Ω</td>
<td>0.01 μF</td>
<td>0.1 μF</td>
<td>4612M-804-500L</td>
</tr>
<tr>
<td>100 Ω</td>
<td>0.01 μF</td>
<td>0.1 μF</td>
<td>4612M-804-101L</td>
</tr>
</tbody>
</table>

804 Electrical Schematic and Application

805 8, 10 and 12 Pin SIP 100K ECL
(4610H-805-ZoC/CCL)
Designed to terminate 6 to 10 transmission lines using Thevenin equivalent parallel termination techniques in systems using 100K ECL. Popular impedance values include 50, 70, 75, 80, 90, 100, 120, 150 or 200 ohms. Standard values for R1 and R2, based on Zo, have been chosen to accommodate 100K ECL designs. A 0.1 μF capacitor is provided to reduce cross talk noise within the network package. Values for Zo and C not shown in the following table are available on a custom basis.

Standard 805 Part Numbers

<table>
<thead>
<tr>
<th>Zo ±2 %</th>
<th>R1</th>
<th>R2</th>
<th>C ±20 %</th>
<th>Bourns Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Ω</td>
<td>90 Ω</td>
<td>113 Ω</td>
<td>0.1 μF</td>
<td>4610H-805-500/103L</td>
</tr>
<tr>
<td>70 Ω</td>
<td>109 Ω</td>
<td>138 Ω</td>
<td>0.1 μF</td>
<td>4610H-805-700/103L</td>
</tr>
<tr>
<td>75 Ω</td>
<td>109 Ω</td>
<td>133 Ω</td>
<td>0.1 μF</td>
<td>4610H-805-750/103L</td>
</tr>
<tr>
<td>80 Ω</td>
<td>104 Ω</td>
<td>148 Ω</td>
<td>0.1 μF</td>
<td>4610H-805-800/103L</td>
</tr>
<tr>
<td>90 Ω</td>
<td>161 Ω</td>
<td>202 Ω</td>
<td>0.1 μF</td>
<td>4610H-805-900/103L</td>
</tr>
<tr>
<td>100 Ω</td>
<td>180 Ω</td>
<td>225 Ω</td>
<td>0.1 μF</td>
<td>4610H-805-101/103L</td>
</tr>
<tr>
<td>120 Ω</td>
<td>216 Ω</td>
<td>270 Ω</td>
<td>0.1 μF</td>
<td>4610H-805-121/103L</td>
</tr>
<tr>
<td>150 Ω</td>
<td>270 Ω</td>
<td>338 Ω</td>
<td>0.1 μF</td>
<td>4610H-805-151/103L</td>
</tr>
<tr>
<td>200 Ω</td>
<td>360 Ω</td>
<td>450 Ω</td>
<td>0.1 μF</td>
<td>4610H-805-201/103L</td>
</tr>
</tbody>
</table>

805 Electrical Schematic and Application

805 Schematic and Application

How To Order 801

46 08 M - 801 - 500 103 L
Model (46 = Conformal SIP)
Number of Pins (8, 10, 12)
Physical Config.
• M = Medium Profile
Electrical Configuration
Resistance Code
• First 2 digits are significant
• Third digit represents the number of zeros to follow.
• Units = ohms
Capacitance Code
• First 2 digits are significant
• Third digit represents the number of zeros to follow.
• Units = picofarads
Termination
L = Lead Free (Sn/Ag/Cu-plated)
Consult factory for other available options.

How To Order 803 and 805

46 08 H - 803 - 101 103 L
Model (46 = Conformal SIP)
Number of Pins (8, 10, 12)
Physical Config.
• H = High Profile
Electrical Configuration
 • 803 • 805
Impedance Code
• First 2 digits are significant
• Third digit represents the number of zeros to follow.
• Units = ohms
Capacitance Code
• First 2 digits are significant
• Third digit represents the number of zeros to follow.
• Units = picofarads
Termination
L = Lead Free (Sn/Ag/Cu-plated)
Consult factory for other available options.

How To Order 804

46 12 M - 804 - 500 L
Model (46 = Conformal SIP)
Number of Pins
Physical Config.
• M = Medium Profile
Electrical Configuration
Resistance Code
• First 2 digits are significant
• Third digit represents the number of zeros to follow.
• Units = ohms
Termination
L = Lead Free (Sn/Ag/Cu-plated)
Consult factory for other available options.

Specifications are subject to change without notice.
Customers should verify actual device performance in their specific applications.