TIC236 SERIES
SILICON TRIACS

- **High Current Triacs**
- **12 A RMS**
- **Glass Passivated Wafer**
- **400 V to 800 V Off-State Voltage**
- **Max I_{GT} of 50 mA (Quadrants 1 - 3)**

absolute maximum ratings over operating case temperature (unless otherwise noted)

<table>
<thead>
<tr>
<th>RATING</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak off-state voltage (see Note 1)</td>
<td>V_{DRM}</td>
<td>TIC236D</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIC236M</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIC236S</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIC236N</td>
<td>800</td>
</tr>
<tr>
<td>Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)</td>
<td>$I_{T(RMS)}$</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)</td>
<td>I_{TSM}</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>Peak gate current</td>
<td>I_{GM}</td>
<td>±1</td>
<td>A</td>
</tr>
<tr>
<td>Operating case temperature range</td>
<td>T_C</td>
<td>-40 to +110</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{stg}</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature 1.6 mm from case for 10 seconds</td>
<td>T_L</td>
<td>230</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 300 mA/°C.
3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DRM}</td>
<td>Repetitive peak off-state current</td>
<td>V_D</td>
<td>Rated V_{DRM}</td>
<td>$I_G = 0$</td>
<td>$T_C = 110°C$</td>
</tr>
<tr>
<td>I_{GT}</td>
<td>Gate trigger current</td>
<td>$V_{supply} = +12$ V†</td>
<td>$R_L = 10$ Ω</td>
<td>$t_{p(g)} > 20$ μs</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_L = 10$ Ω</td>
<td>$t_{p(g)} > 20$ μs</td>
<td>-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_L = 10$ Ω</td>
<td>$t_{p(g)} > 20$ μs</td>
<td>-16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_L = 10$ Ω</td>
<td>$t_{p(g)} > 20$ μs</td>
<td>34</td>
</tr>
<tr>
<td>V_{GT}</td>
<td>Gate trigger voltage</td>
<td>$V_{supply} = +12$ V†</td>
<td>$R_L = 10$ Ω</td>
<td>$t_{p(g)} > 20$ μs</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_L = 10$ Ω</td>
<td>$t_{p(g)} > 20$ μs</td>
<td>-0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_L = 10$ Ω</td>
<td>$t_{p(g)} > 20$ μs</td>
<td>0.9</td>
</tr>
<tr>
<td>V_T</td>
<td>On-state voltage</td>
<td>$I_{TM} = ±17$ A</td>
<td>$I_G = 50$ mA</td>
<td>(see Note 4)</td>
<td>±1.4</td>
</tr>
</tbody>
</table>

† All voltages are with respect to Main Terminal 1.

NOTE 4: This parameter must be measured using pulse techniques, $t_p = \leq 1$ ms, duty cycle $\leq 2\%$. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.
electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_H Holding current</td>
<td>$V_{supply} = +12 \text{ V}$†</td>
<td>22</td>
<td>40</td>
<td>-12</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{supply} = -12 \text{ V}$†</td>
<td>-40</td>
<td>-40</td>
<td>-40</td>
<td>mA</td>
</tr>
<tr>
<td>I_L Latching current</td>
<td>$V_{supply} = +12 \text{ V}$†</td>
<td>80</td>
<td>-80</td>
<td>-80</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{supply} = -12 \text{ V}$†</td>
<td>(see Note 5)</td>
<td>(see Note 5)</td>
<td>(see Note 5)</td>
<td>(see Note 5)</td>
</tr>
<tr>
<td>dv/dt Critical rate of rise of off-state voltage</td>
<td>$V_D = \text{Rated } V_D$</td>
<td>$T_C = 110^\circ \text{C}$</td>
<td>±400</td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td>$dv/dt_{(c)}$ Critical rise of commutation voltage</td>
<td>$V_D = \text{Rated } V_D$</td>
<td>$T_C = 80^\circ \text{C}$</td>
<td>±1.2</td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td>di/dt Critical rate of rise of on-state current</td>
<td>$V_D = \text{Rated } V_D$</td>
<td>$T_C = 110^\circ \text{C}$</td>
<td>±100</td>
<td>A/µs</td>
<td></td>
</tr>
</tbody>
</table>

† All voltages are with respect to Main Terminal 1.

NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:
- $R_G = 100 \Omega$
- $t_{p(g)} = 20 \mu s$
- $t_r = \leq 15 \text{ ns}$
- $f = 1 \text{ kHz}$

thermal characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{juc} Junction to case thermal resistance</td>
<td>2</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{jua} Junction to free air thermal resistance</td>
<td>62.5</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

TYPICAL CHARACTERISTICS

GATE TRIGGER CURRENT VS CASE TEMPERATURE

GATE TRIGGER VOLTAGE VS CASE TEMPERATURE
TYPICAL CHARACTERISTICS

HOLDING CURRENT

vs

CASE TEMPERATURE

TC08AD

LATCHING CURRENT

vs

CASE TEMPERATURE

TC08AE

Figure 3.

Figure 4.

OBSOLETE