
- Sensitive Gate Triacs
- 8 A RMS, 70 A Peak
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrant 1)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	TIC225D		400	
Repetitive peak off-state voltage (see Note 1)	TIC225M		600	V
	TIC225S	V _{DRM}	700	V
	TIC225N		800	
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note	I _{T(RMS)}	8	Α	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			70	Α
Peak gate current	I _{GM}	±1	Α	
Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤	P _{GM}	2.2	W	
Average gate power dissipation at (or below) 85°C case temperature (see Note 4)			0.9	W
Operating case temperature range	T _C	-40 to +110	°C	
Storage temperature range		T _{stg}	-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds	T _L	230	°C	

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 200 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		MIN	TYP	MAX	UNIT		
I _{DRM}	Repetitive peak off-state current	$V_D = \text{rated } V_{DRM}$	I _G = 0	T _C = 110°C			±2	mA
		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		2.3	5	
١,	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \ \mu s$		-3.8	-20	mA
^I GT	current	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \ \mu s$		-3	-10	IIIA
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		6	30	

[†] All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

PARAMETER			TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$ $R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$		0.7 -0.7	2 -2	
V _{GT}	voltage	V _{supply} = -12 V†	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.7	-2	V
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		0.8	2	
V_{T}	On-state voltage	$I_T = \pm 12 A$	$I_G = 50 \text{ mA}$	(see Note 5)		±1.5	±2.1	V
1	Holding current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$I_G = 0$ Init' $I_T = 100 \text{ m/s}$			2.3	20	mA
lн		$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$I_G = 0$	Init' $I_T = -100 \text{ mA}$		-1.6	-20	ША
I _I	Latching current	V _{supply} = +12 V†	(see Note 6)				30	mA
_		$V_{\text{supply}} = -12 \text{ V}\dagger$					-30	
dv/dt	Critical rate of rise of	V _{DRM} = Rated V _{DRM}	$I_0 = 0$	T _C = 110°C		±20		V/µs
	off-state voltage	- DRMa.a. DRM	·G	.6 3				٠, ١,٥
du/dt	Critical rise of	V Dotod V		T _C = 70°C	. 4	. 4.5		V//
dv/dt _(c)	commutation voltage	V _{DRM} = Rated V _{DRM}	I _{TRM} = ± 12 A	(see Figure 6)	±1	±4.5		V/µs

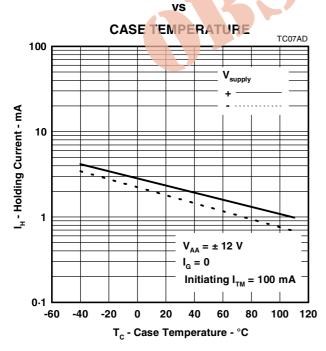
[†] All voltages are with respect to Main Terminal 1.

thermal characteristics

PARAMETER						MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance		4	 7				2.5	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance							62.5	°C/W

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

^{6.} The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$


TYPICAL CHARACTERISTICS

GATE TRIGGER CURRENT vs

CASE TEMPERATURE TC07AA 1000 $\mathbf{V}_{\mathrm{supply}} \; \mathbf{I}_{\mathrm{GTM}}$ $V_{AA} = \pm 12 V$ $R_L = 10 \Omega$ I_{GT} - Gate Trigger Current - mA t_{p(g)} = 20 μs 100 10 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 $\rm T_{\rm c}$ - Case Temperature - $^{\circ}\rm C$

Figure 1.

HOLDING CURRENT

Figure 3.

GATE TRIGGER VOLTAGE vs

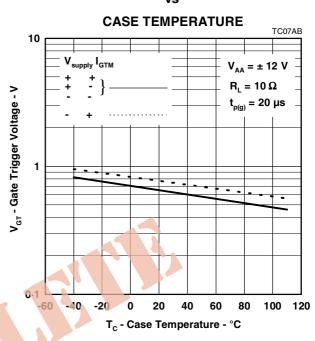
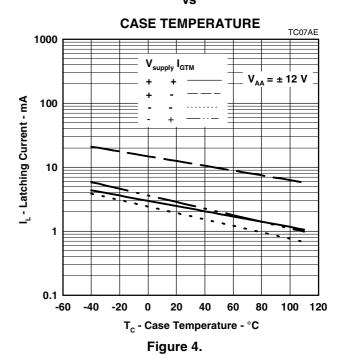
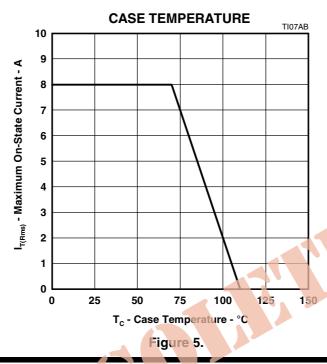
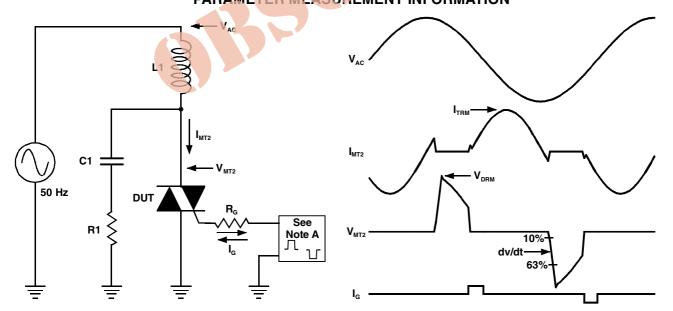



Figure 2.


LATCHING CURRENT vs


PRODUCT INFORMATION

THERMAL INFORMATION

MAXIMUM RMS ON-STATE CURRENT vs

PARAMETER MEASUREMENT INFORMATION

NOTE A: The gate-current pulse is furnished by a trigger circuit which presents essentially an open circuit between pulses. The pulse is timed so that the off-state-voltage duration is approximately 800 µs.

PMC2AA

Figure 6.

PRODUCT INFORMATION