TISP1070H3BJ THRU TISP1120H3BJ

DUAL FORWARD-CONDUCTING UNIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS

The TISP1xxxH3BJ series is obsolete and not recommended for new designs.

TISP1xxxH3BJ Overvoltage Protector Series

Overvoltage Protection for Negative Rail SLICs

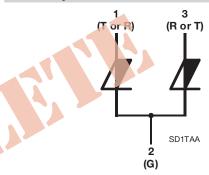
Dual High Current Protectors in a Space Efficient Package

- 2 x 100 A 10/1000 Current Rating
- SMB03 Package (3-pin Modified SMB/DO-214AA) 50 % Space Saving over Two SMBs

Ion-Implanted Breakdown Region


- Precise and Stable Voltage
- Low Voltage Overshoot under Surge

Device Name	V _{DRM}	V _(BO)
Device Name	V	V
TISP1070H3BJ	-58	-70
TISP1080H3BJ	-65	-80
TISP1095H3BJ	-75	-95
TISP1120H3BJ	-95	-120


Rated for International Surge Wave Shapes

Wave Shape	Standard	I _{PPSM}
wave Snape	Standard	A
2/10	GR-1089-CORE	500
8/20	IEC 61000-4-5	300
10/160	TIA-968-A (FCC Part 68)	200
10/700	ITU-T K.20/21/45	150
10/560	TIA-968-A (FCC Part 68)	120
10/1000	GR-1089-CORE	100

SMB03 Package (Top View)

Device Symbol

Description

These dual unidirectional thyristor devices protect SLICs and ISDN power feeds in central office, access and customer premises equipment against overvoltages on the telecom line. Each protector section consists of a voltage-triggered unidirectional thyristor with an anti-parallel diode. In the negative polarity, the thyristor allows signal voltages, without clipping, up to the maximum off-state voltage value, V_{DRM} , see Figure 1. Voltages exceeding V_{DRM} are limited and will not exceed the breakover voltage, $V_{(BO)}$, level. If sufficient current flows due to the overvoltage, the thyristor switches into a low-voltage on-state condition, which diverts the current from the overvoltage through the thyristor. When the diverted current falls below the holding current, I_{H} , level the thyristor switches off and restores normal system operation. Positive overvoltages are limited by the conduction of the anti-parallel diode.

The TISP1xxxH3BJ is available in four voltages and has a 100 A 10/1000 current rating. These protectors have been designed particularly for use in equipment that must meet the following standards and recommendations: GR-1089-CORE, TIA-968-A (replaces FCC Part 68), ITU-T K.20, K.21 and K.45. Housed in a SMB03 package (3-pin modified SMB/DO-214AA), these parts are space efficient to replace protection designs of 100 A 10/1000 or less which use multiple SMBs or a 6-pin SMT package.

How to Order

Device	Package	Carrier	Order As	Marking Code	Std. Qty.
TISP1xxxH3BJ	SMB03 (3-pin modified SMB/DO-214AA)	Embossed Tape Reeled	TISP1xxxH3BJR-S	1xxxH3	3000

Insert xxx value corresponding to device name.

JUNE 2003 - REVISED MAY 2011

Specifications are subject to change without notice.

Customers should verify actual device performance in their specific applications.

^{*}RoHS Directive 2002/95/EC Jan 27 2003 including Annex

TISP1xxxH3BJ Overvoltage Protector Series

BOURNS

Absolute Maximum Ratings, TA = 25 °C (Unless Otherwise Noted)

Rating	Symbol	Value	Unit
repetitive peak off-state voltage, (Terminals 1-2 and 3-2) (see Note 1) 1070 11080 11095 11120		-58 -65 -75 -95	V
Non-repetitive peak on-state pulse current (see Notes 2 and 3) 2/10 (Telcordia GR-1089-CORE, 2/10 voltage wave shape) 8/20 (IEC 61000-4-5, combination wave generator, 1.2/50 voltage wave shape) 10/160 (TIA-968-A (replaces FCC Part 68), 10/160 µs voltage wave shape) 5/310 (ITU-T K.44, 10/700 µs voltage wave shape used in K.20/45/21) 5/320 (TIA-968-A (replaces FCC Part 68), 9/720 µs voltage wave shape) 10/560 (TIA-968-A (replaces FCC Part 68), 10/560 µs voltage wave shape) 10/1000 (Telcordia GR-1089-CORE, 10/1000 voltage wave shape)	I _{PPSM}	2x500 2x300 2x200 2x150 2x150 2x120 2x100	А
Non-repetitive peak on-state current (see Notes 2 and 3) 50 Hz, 1 cycle 60 Hz, 1 cycle 1000 s 50 Hz/60 Hz a.c. Initial rate of rise of on-state current, Linear current ramp, Maximum ramp value < 50 A	2x30 2x35 2x1.2 500	A A/μs	
Junction temperature	di _T /dt	-40 to +150	°C
Storage temperature range	T _{stg}	-65 to +150	°C

NOTES: 1. At -40 °C derate linearly to 0.93 x V_{DRM} (25 °C)

- 2. Initially the device must be in thermal equilibrium with $T_J = 25$ °C.
- 3. These non-repetitive rated currents are peak values of either polarity. The rated current values are applied to the terminals 1 and 3 simultaneously (in this case the terminal 2 return current will be the sum of the currents applied to the terminals 1 and 3). The surge may be repeated after the device returns to its initial conditions.

Electrical Characteristics for the 1 and 2 or the 3 and 2 Terminals, $T_A = 25$ °C (Unless Otherwise Noted)

	Parameter	Test Conditions		Min	Тур	Max	Unit
	Repetitive peak off-	V - V	T _A = 25 °C			-5	μΑ
IDRM	state current	$V_D = V_{DRM}$	$T_A = 85 ^{\circ}C$			-10	μΑ
			'1070			-70	
V = -:	AC breakover voltage	$dv/dt = -250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$	'1080			-80	V
$V_{(BO)}$ AC breakover voltage $dv/dt = -250 \text{ V/ms}, R_{SO}$	100/01 = -250 V/1118, PISOURCE = 500 \$2	'1095			-95	v	
			'1120			-120	
I _(BO)	Breakover current	$dv/dt = -250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$				-800	mA
I _H	Holding current	$I_T = -5 \text{ A,d i/dt} = +30 \text{ mA/ms}$		-150			mA
dv/dt	Critical rate of rise of	Linear voltage ramp, Maximum ramp value < 0.85 x V _{DRM}		-5			kV/μs
dv/dt	off-state voltage	Linear voltage ramp, Maximum ramp value < 0.05 x v _{DRM}		ុ			κν/μς
I _D	Off-state current	$V_D = -50 \text{ V}$	T _A = 85 °C			-10	μΑ
V_{F}	Forward voltage	$I_F = +5 \text{ A,t }_W = 500 \mu\text{s}$				3	V

TISP1xxxH3BJ Overvoltage Protector Series

BOURNS®

Electrical Characteristics for the 1 and 2 or the 3 and 2 Terminals, $T_A = 25$ °C (Unless Otherwise Noted)

	Parameter	Test Conditions		Min	Тур	Max	Unit
		'1070		161			
		f = 1 MHz = V = 1 V rmo V = 2 V	080		152		
	$f = 1 \text{ MHz}, V_d = 1 \text{ V rms}, V_D = -2 \text{ V}$	095		139			
		120		116			
C _{off}	Off-state capacitance	1-1	070		58		pF
		$f = 1 \text{ MHz}, V_d = 1 \text{ V rms}, V_D = -50 \text{ V}$ '1080	080		55		
				50			
	11	120		42			

Thermal Characteristics

	Parameter	Test Conditions	Min	Тур	Max	Unit
	R _{0JA} Junction to free air thermal resistance	EIA/JESD51-3 PCB, T _A = 25 °C, (see Note 4)		113 52		2011
H _θ J.		265 mm x 210 mm populated line card, 4-layer PCB, I _T = I _{TSM(1000)} , T _A = 25 °C				°C/W

NOTE 4: EIA/JESD51-2 environment and PCB have standard footprint dimensions connected with 5 A rated printed wiring track widths.

Parameter Measurement Information

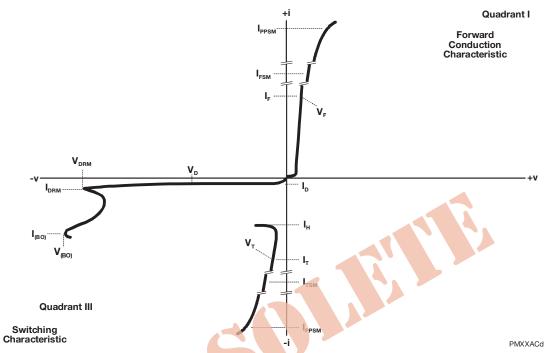


Figure 1. Voltage-Current Characteristic for Terminal Pairs 1-2 and 3-2
All Measurements are Referenced to Terminal 2

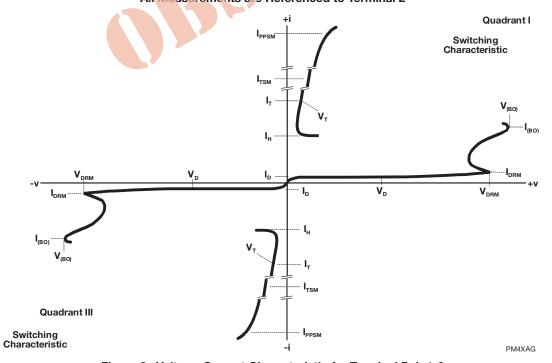
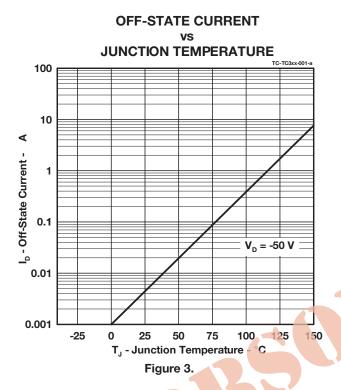
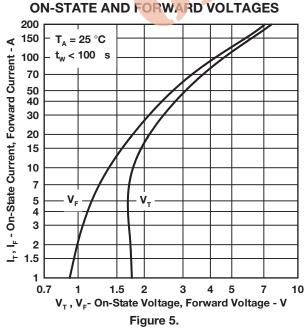
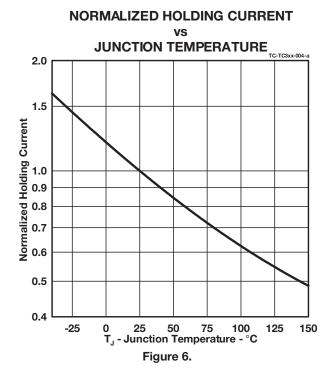



Figure 2. Voltage-Current Characteristic for Terminal Pair 1-3
All Measurements are Referenced to Terminal 3

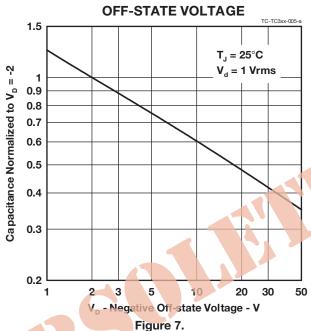

Typical Characteristics



NORMALIZED BREAKOVER VOLTAGE VS JUNCTION TEMPERATURE TO-TC300-002-3 1.10 1.10 1.05 -25 0 25 0 25 50 75 100 125 150 T_J - Junction Temperature - °C

Figure 4.

ON-STATE AND FORWARD CURRENTS



Typical Characteristics (Continued)

NORMALIZED CAPACITANCE

VS

Rating and Thermal Information

NON-REPETITIVE PEAK ON-STATE CURRENT

vs

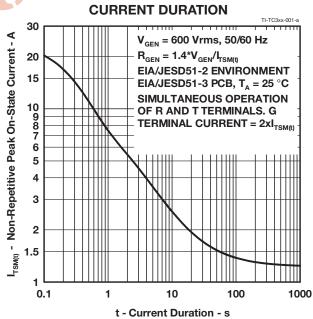


Figure 8.

Bourns Sales Offices

Region	Phone	Fax
The Americas:	+1-909-781-5500	+1-909-781-5700
Europe:	+41(0)41-7685555	+41(0)41-7685510
Asia-Pacific:	+886-2-25624117	+886-2-25624116

Technical Assistance

Region	Phone	Fax
The Americas:	+1-951-781-5500	+1-951-781-5700
Europe:	+41(0)41-7685555	+41(0)41-7685510
Asia-Pacific:	+886-2-25624117	+886-2-25624116

www.bourns.com

Bourns® products are available through an extensive network of manufacturer's representatives, agents and distributors. To obtain technical applications assistance, a quotation, or to place an order, contact a Bourns representative in your area.

