DESIGN NOTE

Selecting the Right Power Inductor for DC/DC Converters

INTRODUCTION

Buck and boost converters (Figure 1 and Figure 2) are common forms of DC/DC converters used in a wide variety of consumer automotive and industrial applications. Bourns® PQ Series power inductors are ideally suited for DC/DC converters operating at powers greater than 100 W. This Design Note provides a guide to selecting the right power inductor by providing design rules and key inductor values as well as the equations needed to determine peak and RMS currents.

KEY PARAMETERS REQUIRED

The following questions need to be answered in order to calculate the correct inductor value:

- Operating frequency F_{sw} (kHz)
- 2. Output Power (watts)
- 3. Input and Output Voltages (volts)
- 4. Ripple Current in Inductor ΔI_{pp} (amps)
- 5. Operating Mode (CCM, BCM, DCM)

DESIGN STEPS

The calculations and steps below are necessary to determine the inductor that best meets the application requirements.

- Calculate Average Current I_{out} (amps)
- 2. Calculate Duty Cycle D (Equations 1, 2, 8, 10)
- 3. Calculate the Inductance Value (μH) (Equations 3, 9)
- 4. Calculate Inductor Max. Current (Amps) (Equations 4, 5)
- 5. Calculate Inductor RMS Current (Amps) (Equations 6,7)
- Search for Suitable Inductor with Correct Inductance, I_{sat} and RMS Currents

Selecting the Right Power Inductor for DC/DC Converters

BUCK CONVERTER DESIGN EXAMPLE

The following inductor characteristics are typically required for a buck converter:

- 1. $F_{sw} = 200 \text{ kHz}$
- 2. Power = 264 watts
- 3. $V_{in} = 48 V_{dc}$, $V_{out} = 12 V_{dc}$
- 4. Ripple Current $\Delta I_{pp} = 50 \text{ A}$
- 5. Operating Mode = DCM (DCM2 = 0.1)

CALCULATING A SOLUTION

Design Steps 1 through 6 are shown in Table 1 with the provided equations:

Calculate Average Current I _{out}	$I_{out} = \frac{264}{12} = 22 \text{ A}$			
Calculate Duty Cycle D (Equations 1, 2, 8, 10)	$D = \frac{12}{48(1 - 0.1)} = 0.3125$			
Calculate Duty Cycle D (Equations 1, 2, 6, 10)	Dcm1 = 1 - 0.3125 - 0.1 = 0.587			
Calculate the Inductance Value (Equations 3, 9)	$L = \frac{(48 - 12) * 0.3125}{(50 * 200,000)} = 1.1 \mu H$			
Calculate Inductor Max. Current (Equations 4, 5)	$I_{max} = 50 \text{ A}$			
Calculate Inductor RMS current (Equations 6,7)	$I_{rms} = 50 \sqrt{\frac{0.3125 + 0.587}{3}} = 27.37 \text{ A}$			
The Optimum Power Inductor that Meets	Part Number	Inductance	RMS Current	Peak Current (I _{sat})
Inductance, I _{sat} and RMS Current Requirements	PQ2614BLA-1R5K	1.5 μΗ	30.0 A	100 A
Table 1				

www.bourns.com 9/19 • e/IC1974

Selecting the Right Power Inductor for DC/DC Converters

BOURNS® PQ SERIES POWER INDUCTORS

Bourns designed the following features into the PQ Series power inductors to deliver considerable application benefits for high-power buck and boost converters.

Features	Benefits	
Coil Made with Stamped Flat Wire	Low DC and AC Resistance	
High Frequency Ferrite Core	 Low Core Losses at High Frequency High Permeability Material Requiring Fewer Turns than Iron Powder which means lower DC resistance 	
Automated Production Line	High Quality	
Available for Selection in LTpowerCAD®	Recognized by Leading Power Vendors	

SUMMARY OF EQUATIONS AND WAVEFORMS

www.bourns.com 9/19 • e/IC1974

[&]quot;LTpowerCAD" is a registered trademark of Analog Devices, Inc.

Selecting the Right Power Inductor for DC/DC Converters

SUMMARY OF EQUATIONS AND WAVEFORMS (CONTINUED)

Reference	Equation	Description	Waveform (if applicable)	
1	$D = \frac{V_{out}}{V_{in}}$	Duty Cycle Buck in CCM and BCM		
2	$D = \frac{V_{out}}{V_{in}(1 - Dcm2)}$	Duty Cycle Buck in DCM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3	$L = \frac{(V_{in} - V_{out}) * D}{F_{sw} * \Delta I}$	Inductance		
4	$I_{Lmax} = I_0 + \frac{\Delta I}{2}$	Max. Current CCM	$ \begin{array}{c c} i_{L} & I_{LV} \\ & \downarrow & I_{L(max)} & I_{LV} \\ \hline & I_{HV} & \downarrow & \downarrow \\ \hline & Inductor Current \end{array} $	
5	I _{Lmax} =ΔI	Max. Current CCM and DCM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

www.bourns.com 9/19 • e/IC1974

DESIGN NOTE

Selecting the Right Power Inductor for DC/DC Converters

SUMMARY OF EQUATIONS AND WAVEFORMS (CONTINUED)

Reference	Equation	Description	Waveform (if applicable)
6	$I_{Lrms} = \sqrt{I_{o^2} + \frac{\Delta I^2}{12}}$	RMS Current CCM and BCM	
7	$I_{Lrms} = \Delta I \sqrt{\frac{D + Dcm1}{3}}$	RMS Current Buck DCM and Boost DCM	
8	$D=1-\frac{V_{in}}{V_{out}}$	Duty Cycle Boost Converter	
9	$L = \frac{V_{in}D}{F_{SW}\Delta I}$	Inductance Boost Converter	
10	$Dcm2 = 1 - \frac{V_{out}D}{V_{out} - V_{in}}$	DCM Duty Cycle	

www.bourns.com

BOURNS®

Americas: *Tel* +1-951 781-5500 *Email* americus@bourns.com

EMEA: Tel +36 88 885 877
Email eurocus@bourns.com

Asia-Pacific: Tel +886-2 256 241 17
Email asiacus@bourns.com